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Growth and division of active droplets provides a
model for protocells
David Zwicker1,2†, Rabea Seyboldt1†, Christoph A.Weber1, Anthony A. Hyman3 and Frank Jülicher1*
It has been proposed that during the early steps in the origin of life, small droplets could have formed via the segregation
of molecules from complex mixtures by phase separation. These droplets could have provided chemical reaction centres.
However, whether these droplets could divide and propagate is unclear. Here we examine the behaviour of droplets in systems
that are maintained away from thermodynamic equilibrium by an external supply of energy. In these systems, droplets grow by
the addition of droplet material generated by chemical reactions. Surprisingly, we find that chemically driven droplet growth
can lead to shape instabilities that trigger the division of droplets into two smaller daughters. Therefore, chemically active
droplets can exhibit cycles of growth and division that resemble the proliferation of living cells. Dividing active droplets could
serve as a model for prebiotic protocells, where chemical reactions in the droplet play the role of a prebiotic metabolism.

L iving systems consist of cells that can grow and divide.
Cells take up matter from the outside world to grow, they
release waste products, and they are able to divide, creating

more cells. A fundamental question is to understand how cells
arose early in evolution. Early in the origin of life, chemical
reaction centres or chemical microreactors had to form to organize
chemical reactions in space. These microreactors had to exchange
material with the outside and they had to propagate. Recently,
the idea of Oparin and Haldane1,2 that small droplets, which
they called coacervates, could organize molecules in microreactors
has resurfaced to prominence3–8. Such droplets are liquid-like
aggregates that concentrate molecules that have separated from a
complex mixture.

Liquid droplets are self-organized structures that coexist with
a surrounding fluid7,9. The interface separating the two coexisting
phases provides them with a well-defined surface. The associated
surface tension forces them into a spherical shape. Furthermore,
many substances can di�use across the interface. The segregation
of components into a droplet concentrates material in a confined
volume, which may facilitate specific chemical reactions. Thus,
droplets provide containers in which chemical reactions can
be spatially organized. Although the thermodynamics of phase
transitions can explain how liquid drops can form, it is unclear how
such droplets could propagate by division and subsequent growth,
an ability that would be key at the origin of life.

Droplets grow by taking up material from a supersaturated
environment or byOstwald ripening9–13. Ostwald ripening describes
the exchange of material between droplets by di�usion, usually
leading to growth of large droplets while small droplets shrink.
Furthermore, droplets can increase in size by fusion of two droplets
into a larger one. These processes lead to the formation of droplets of
increasing size while the droplet number decreases with time. This
behaviour is opposite to that of cells, which have a characteristic size
and increase their number by division. How could droplets divide
and propagate?

We have recently shown that droplets that are maintained
away from thermodynamic equilibrium by a chemical fuel can
have unusual properties14,15. In particular, in the presence of

chemical reactions, Ostwald ripening can be suppressed15 and
multiple droplets can stably coexist, with a characteristic size
set by the reaction rates15–18. Here, we show that, surprisingly,
spherical droplets subject to chemical reactions spontaneously
split in two smaller daughter droplets of equal size. Therefore,
chemically active droplets can grow and subsequently divide and
thereby propagate by using up the inflowing material as a fuel. We
conclude that droplets can indeed behave similarly to cells in the
presence of chemical reactions that are driven by an external fuel
reservoir. Such active droplets could represent models for growing
and dividing protocells with a rudimentary metabolism that is
represented by simple chemical reactions that are maintained by an
external fuel.

Division of active droplets
Droplets can serve as small compartments to spatially organize
chemical reactions. The emergence of droplets requires phase sep-
aration into two coexisting liquid phases of di�erent composi-
tion. Phase separation is driven by molecular interactions, where
molecules with an a�nity for each other lower their energy if they
come closely together. A fluid can demix if the energy decrease
associated with molecular interactions overcomes the e�ects of
entropy increase by mixing19,20. If those interactions are strong, a
sharp interface separates the coexisting phases.

Droplets can become chemically active if the material of the
droplet is produced and destroyed by chemical reactions. An
example that resembles a simple protocell is shown schematically
in Fig. 1a. The droplet is formed by a droplet material D that is
generated inside the droplet from a high-energy precursor N, which
plays the role of a nutrient. Droplet material can degrade into a
lower energy component W that plays the role of a waste, which
leaves the droplet by di�usion. The droplet can survive if N is
continuously supplied and W is continuously removed. This can be
achieved by recycling N using an external energy source such as a
fuel or radiation.

Inspired by Oparin21, we discuss the physics of such active
droplets using a simple model with only two components A and
B (see Fig. 1b). The droplet material B phase separates from
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Figure 1 | Division of chemically active droplets. a, Schematic
representation of an active droplet as a simple model of a protocell.
The droplet (green) consists of a droplet material D. Nutrients N of high
chemical energy can di�use into the droplet. Inside the droplet, N is
transformed to D by chemical reactions. Droplet material D is degraded
chemically into low-energy waste W that leaves the droplet. b, Simple
model, with droplet material B and soluble component A. The system is
driven by a chemical fuel C that is transformed to the reaction product C0.
c, Sequence of shapes of a dividing droplet at di�erent times as indicated.
The dynamic equations of a continuum model corresponding to the
situation shown in b were solved numerically. The droplet shapes are
shown as equal concentration contours (black). Parameter values are
⌫�t0/1c=7⇥ 10�3, ⌫+t0/1c= 1.9⇥ 10�3, and k±t0 = 10�2, where t0
is a characteristic time of the continuum model (see Supplementary
Information). Indicated times are given in units of 102 t0.

the solvent. It can spontaneously be degraded by a chem-
ical reaction

B!A (1)

into molecules of type A that are soluble in the background fluid
and leave the droplet. The backward reaction A ! B is not
proceeding spontaneously because B is of higher energy than A.
New droplet material B can be produced by the second reaction

A+C!B+C0 (2)

that is coupled to a fuel C. Here C0 is the low-energy reaction
product of the fuel molecules. The chemical potential di�erence
1µC = µC�µC0 > 0 provided by the fuel powers the production
of high-energy B from low-energy A. The di�erence 1µC can be
maintained constant if the concentrations of C and C0 are set by
an external reservoir. In this case, the system is kept away from a
thermodynamic equilibrium (see Fig. 2 and Methods).

The combination of phase separation and non-equilibrium
chemical reactions can be studied in a continuum model15–17
(see Supplementary Information). Using this model, we find that
spherical droplets that are chemically active can undergo a shape
instability and split into two smaller droplets, despite their surface
tension (see Fig. 1c and Supplementary Movie). A droplet first
grows until it reaches its stationary size15. Then, the droplet starts to
elongate and forms a dumbbell shape. This dumbbell splits into two
smaller droplets of equal size. The resulting smaller droplets grow
again until a new division may occur, reminiscent of living cells.

To investigate the stability of spherical droplets, we study the
droplet shape by an e�ective dropletmodel (see Fig. 3 andMethods).
Figure 4a shows the behaviour of the stationary droplet radius in this
model as a function of the supersaturation ✏. This supersaturation
is the excess concentration of droplet material far from the droplet,
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Figure 2 | Reaction rates and energy supply. Schematic representation of
the reaction cycle involving the two pathways (1) and (2). The di�erences
of the chemical potentials µ determine the direction of the spontaneous
reactions: coupling to the chemical fuel C with reaction product C0 drives
reaction pathway (2) in the direction A! B outside the droplet. Inside the
droplet, where the concentration of C is smaller, reaction pathway (1) in the
direction B! A dominates. See Methods and the Supplementary
Information for details.

generated by the chemical reaction (2). For ✏ >0, material di�uses
to the droplet and is incorporated. Figure 4a shows that for a given
turnover ⌫� of droplet material inside the droplet (see Methods),
stationary droplets exist only for su�ciently large supersaturation.
Beyond this threshold, droplets smaller than the critical radius
(Fig. 4a, black dotted lines) shrink,while larger droplets grow toward
the stationary radius (Fig. 4a, black solid line)15. At this stationary
radius, the influx of B due to the supersaturation outside is balanced
by the e�ux ofmaterial A produced inside the droplet. Thus, a larger
turnover leads to smaller droplets (Fig. 4a).

Droplet division occurs when a spherical droplet becomes
unstable and elongates. We performed a linear stability analysis
of spherical droplets at their stationary radius in the e�ective
droplet model (see Supplementary Methods). We find that for
increasing supersaturation ✏, a spherical droplet with surface
tension undergoes a shape instability when its radius reaches a
critical value Rdiv that depends on the reaction rates and droplet
parameters (see Fig. 4a). Beyond the radius Rdiv, the spherical shape
is unstable and any small shape deformation triggers the elongation
of the droplet shape along one axis.

The stability analysis of the e�ective droplet model can be
represented in a state diagram (see Fig. 4b). We find three di�erent
regions as a function of supersaturation ✏ and turnover of droplet
material ⌫�. A region where droplets do not exist (white), a region
in which spherical droplets are stable (blue), and a region in which
spherical droplets are unstable (red).

To study how the shape instability leads to droplet division,
we investigated the droplet dynamics beyond the linearized
analysis using the continuum model. This model can capture
the topological changes of the droplet surface that occur during
division. Numerical calculations of the continuum model (see
Supplementary Information) confirm the results of the stability
analysis. An example of droplet division is shown in Fig. 1c.
The state diagram for the continuum model is shown in Fig. 4c.
Comparing the state diagrams Fig. 4b and Fig. 4c reveals that both
models exhibit qualitatively the same behaviours. Note that due
to simplifications in the e�ective droplet model, the parameters
are di�erent in both models (see Supplementary Information) and
the regions in both diagrams di�er slightly. While Fig. 4b shows
only where droplets become unstable (red line), Fig. 4c reveals the
behaviours of droplets in the unstable region. We find that droplets
typically divide into two daughters (red circles). However, for some
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Figure 3 | Reaction flux, concentration profile and di�usion flux in an e�ective droplet model. Shaded regions correspond to concentration ranges inside
(green) and outside the droplet (blue). a, Chemical reaction flux s as a function of concentration (black). The linearized fluxes inside (green) and outside
the droplet (blue) are indicated as dashed lines. b, Stationary concentration profile of the droplet material B (black) and stationary flux j=�D±@rc (brown,
axis on the right). The droplet radius R̄, the equilibrium concentrations c(0)

± , and the concentration far from the droplet c1 are indicated. The corresponding
supersaturation is defined as ✏ = (c1� c(0)

+ )/1c (see Methods). Parameter values are: k±⌧0 = 10�2, c(0)
+ =0, ��=�+, D�=D+, ⌫0 = 10�21c/⌧0,

⌫�/⌫0 = 1.2 and ⌫+/⌫0 =0.1.
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Figure 4 | Stationary droplet radii and stability diagrams. a, Stationary radii of active droplets. The droplet radius R of spherical droplets is shown as a
function of supersaturation ✏ for di�erent values of normalized turnover ⌫�/⌫0 =0, 1, 3 (from left to right). Radii of stable droplets are shown as solid black
lines. Dotted lines indicate states where droplets are unstable with respect to size (black) or shape (red). The results are obtained for the e�ective droplet
model described in the Methods. Parameter values are: k±⌧0 = 10�2, c(0)

+ =0, ��=�+, D�=D+ and ⌫0 = 10�21c/⌧0. Here, w=6�+� /1c, and
⌧0 =w2/D+ are characteristic length and time scales. b, Stability diagram of active droplets as a function of supersaturation ✏ =⌫+/(k+1c) and turnover
⌫� of droplet material. Droplets either dissolve and disappear (white region), are spherical and stable (blue region), or undergo a shape instability and
typically divide (red region). The lines of instability are obtained for the droplet model described in the Methods for the same parameters as in a. c, The
same stability diagram as in b but for the continuum model described in the Supplementary Information. The behaviour of droplets is indicated by symbols
for di�erent values of ⌫� and ✏. Parameter values are k±t0 = 10�2 (see Supplementary Information). The parameter values corresponding to Fig. 1c are
indicated (large red circle).

parameter values they divide into three droplets (red triangles). In a
few cases, division was not seen during the time of calculations (red
squares). In these cases droplets elongated until they reached the size
of the simulation box. It is unclear whether they would divide in a
larger box.

Our numerical calculations also reveal that droplets typically
undergo multiple divisions (see Fig. 5a and Supplementary Movie).
After a first division, the smaller daughters grow until they
divide again when they reach the radius Rdiv. Interestingly, the

division axes are not independent of each other (see Fig. 5a).
In the absence of system boundaries, the division axes of
both daughters are perpendicular to the first division axis (see
Fig. 5b). Similarly, when the four granddaughters divide, their
division axes are perpendicular to both the division axes of the
first and the second division. The division axes in subsequent
droplet divisions are determined by droplet interactions via the
concentration fields surrounding the droplets. The two growing
daughter droplets e�ectively compete for droplet material, leading
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Figure 5 | Cycles of growth and divisions. a, Sequence of droplet divisions
at di�erent times as indicated in units of 102t0. Droplet configurations
obtained from numerical solutions to the continuum model are represented
as three-dimensional shapes. Parameter ⌫+t0/1c=2⇥ 10�3. Remaining
parameters are the same as in Fig. 1c. b, Schematic representation of the
orientation of subsequent division axes. c, Droplet division is oriented along
the axis for which di�usion fluxes (green arrows) are maximal.

to the depletion of droplet material in the space between them.
Therefore, di�usion fluxes and growth rates are larger along axes
perpendicular to the previous division axis (see Fig. 5c). This
bias due to droplet interactions determines the division axes. In
our numerical calculations, boundary conditions also influence the
droplet divisions and slightly modify the division axes (see Fig. 5a).

Could such droplet division occur in experiments and what
conditions are needed? To address this question, we provide in
Table 1 two examples of parameter sets for which droplets would
divide. These parameters are chosen such that dividing droplets
would have a diameter of several micrometres and the material
in the droplet would turn over in about two minutes. In case I,
the surface tension is chosen small, similar to surface tensions that
can be found in colloidal droplets or protein liquid phases3. The
interfacial width in this case is of the order of ten nanometres. Case II
describes droplets with a surface tension similar to that of oil/water
interfaces with an interface thickness of about one nanometre. These
examples show that small droplets that could be observable under
the microscope could indeed undergo droplet division for plausible
rates of chemical reactions and realistic interfacial tensions.
However, as shown in Supplementary Information IV, droplet
division for macroscopic droplets of millimetre or centimetre size
will be di�cult to achieve.

Chemically active droplets as a model for protocells
In this paper we have introduced a simple model to show that
chemically active droplets can undergo cycles of growth and division
reminiscent of cells. Our model combines the set of features that
are minimally required for droplet division: two di�erent chemical
components undergoing reactions; phase separation; external
energy input that maintains the system away from thermodynamic
equilibrium. Our work shows that such droplet division would
be expected to occur in small droplets. It will be an important
challenge to observe this droplet division in future experiments. We
have provided in Table 1 examples of parameter values for which
micrometre-sized droplets would divide. These parameter values
could in principle be achieved in artificial droplets or in in vitro
studies of protein droplets.

The fact that active droplets tend to become unstable and
divide is an unusual behaviour of droplets because surface tension
usually opposes such shape changes. An instability of the droplet
shape requires non-equilibrium conditions. In our model, these
non-equilibrium conditions are provided by the energy input of
a chemical fuel. The resulting chemical reactions drive di�usive
fluxes across characteristic length scales as known for reaction–
di�usion systems22,23. In the presence of droplet interfaces, these
fluxes can induce a shape instability of stationary droplets. In the
absence of chemical reactions and the resulting fluxes, the shape
instability does not occur. The shape instability leading to droplet
division introduced here can be compared to the Mullins–Sekerka
instability often discussed in the context of crystal growth24 (also see
Supplementary Information). Both instabilities require a di�usion
flux toward the interface. In the case of the Mullins–Sekerka
instability the shape of a growing aggregate becomes unstable. For
example, an interface can become unstable with respect to growing
spikes called dendrites beyond a critical interface velocity. In
contrast, the chemical-reaction-induced shape instability discussed
here can occur for a stationary, non-growing droplet. This di�erence
is important because in the case of aMullins–Sekerka instability, the
instability of a droplet does not lead to a shrinking waistline and
fission but rather to the formation of a growing dendritic structure25.
Only for the instability of a steady-state droplet found here does
the instability generate a narrowing of the waistline of the initial
droplet shape leading to fission in two droplets (see Supplementary
Information III).

We propose that active droplets that turn over by chemical
reactions provide a simple model for prebiotic protocells. The
nature of such protocells remains unknown. While evolution can
be reconstructed to a large extent both from fossil records and
from the phylogenetic analysis of today’s genomes, the structure and
nature of early life forms remain quite unclear26. This leads to many
interesting questions. Howdid the first replicating cells emerge from
prebiotic precursors? Since replication involves specific chemical
reactions, early replicators had to spatially organize chemistry and
to concentrate certainmolecules to facilitate reactions that would be
unlikely in dilute or disorganized situations. Therefore, protocells as
containers for chemical reactions had to appear.

Alexander Oparin pioneered the idea that macromolecular ag-
gregation could lead to the formation of ‘coacervates’, liquid droplets
that could organize chemistry and provide microreactors in which
selected molecules were concentrated for prebiotic chemistry1,27.
What types of molecules could have formed such droplets? It is
interesting to note that modern-day cells possess a number of
chemical compartments that are not separated by amembrane from
the cell cytoplasm but that form by phase separation from the
cytoplasm3,7,28,29. Many of these compartments are liquid and consist
of RNA molecules and RNA-binding proteins30–33. The RNA world
hypothesis suggests that at the origin of life, RNA was both the
carrier of genetic information and could have acted as early en-
zymes34,35. Folded RNAmolecules called ribozymes can be catalysts
for many reactions including RNA processing36. Combining RNA
with other molecules such as simple peptides may have been su�-
cient to organize RNA in liquid droplets4. The steps from chemically
active droplets to the first dividing cells with membranes pose a big
challenge to the understanding of early evolution. While it has been
suggested that ribozymes that replicate RNA could have formed by
molecular evolution35,37, it is unclear how a cell membrane and cell
division could have emerged38–41.

The possibility that droplets may spontaneously divide has been
discussed in the context of either negative surface tension42,43 or
in active nematic droplets44. Here we show that simply adding a
proto-metabolism to droplets formed by classical phase separation
can naturally lead to droplet division despite their surface tension.
Membranes or surfactants are therefore not required to achieve
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Table 1 | Examples of parameter values for dividing droplets.

D± (µm2 s�1) w (nm) � (mNm�1) c(0)� (mM) c(0)+ (mM) ⌫� (mMs�1) l± (mm) ✏ tR (s) Rdiv (µm)

Case I 10 10 10�3 100 1 1 0.1 2⇥ 10�3 100 3
Case II 10 1 10 103 10�3 10 5 8⇥ 10�4 100 1
Parameters are defined in the Methods. For these parameters, the resulting supersaturation ✏, the turnover time tR = c(0)

� /⌫� , and the radius Rdiv where the stationary droplet shape becomes unstable
are given. Case I is motivated by colloidal droplets or liquid protein phases with low surface tension. For Case II we chose properties of typical water/oil droplets.

division of prebiotic cells. Active droplets are natural systems to
organize the chemistry of replicators and to form protocells. Such
droplets can in principle form spontaneously by a rare nucleation
event. Once they exist, they grow and divide. They provide a
container for chemical reactions and they concentrate selected
molecules that have an a�nity to the droplet phase. The liquid
and dynamic nature of active droplets implies that components
in the droplet can mix and chemical reactions are facilitated.
Protocells formed by active droplets require a constant energy
supply, which could have been provided by a chemical fuel, by tides,
or by temperature gradients, for example, in hydrothermal vents
on the seafloor2,45–47. The chemical reactions by which new droplet
material is formed and subsequently degraded represent an early
metabolism. It will be interesting to generalize our study to systems
with many droplets of di�erent type. This corresponds to prebiotic
ecosystems in which droplets may have ‘symbiotic’ relationships if
one produces the nutrient of the other. Alternatively one may find
predator–prey relationships when a droplet fuses with a di�erent
one to harvest its resources.

The possibility that early protocells were active membraneless
droplets suggests possible scenarios by which cell membranes could
have appeared. The droplet surface is an interface that will in general
attract certain types of amphiphilic molecule. Such molecules have
an a�nity neither for the droplet phase nor for the surrounding
fluid. As a result, selected molecules might populate the droplet
surface and surface chemical reactions could be established. If lipids
were available in the outside fluid, lipidmonolayers or bilayers could
be attracted to the specific droplet surface chemistry. Our work
shows that active droplets can naturally divide. Therefore, protocells
could have obtained their membranes long after the first dividing
cells had appeared on Earth.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Reaction rates and energy supply. The chemical reaction A *) B converts
soluble precursors A to droplet material B with forward reaction flux s!
and reverse flux s . The net reaction flux s= s!� s characterizes the
concentration per unit time that is undergoing the reaction. Compatibility with
thermodynamics requires48

s!
s 

=exp
✓
�1µ

kBT

◆
(3)

where 1µ is the chemical free energy change associated with the forward reaction.
This condition leads to detailed balance of forward and backward reaction rates at
chemical equilibrium. The net reaction flux s can therefore be written as

s= s 

exp

✓
�1µ

kBT

◆
�1

�
(4)

Chemical equilibrium is reached when 1µ=0 and the net reaction flux vanishes,
s=0. If as in (1) the reaction does not involve other reaction partners or external
energy input, the chemical free energy change 1µ=1µ(1) is given by the
di�erence of the chemical potentials,

1µ(1) =µB�µA (5)

Such a reaction leads to spontaneous degradation of B and formation of A if
µB >µA and thus 1µ(1) >0. The chemical potentials of a molecular species n can
be written as µn =kBT ln(vncn)+wn, where vn is a molecular volume and cn the
concentration of species n. The first term is of entropic origin while the
contribution wn is mainly enthalpic and includes internal molecular free energies
and interaction energies between molecules. Note that wn generally
depends on composition, and thus has di�erent values inside and outside
the droplet.

The net reaction rate corresponding to reaction pathway (1) can thus be
written as

s(1) = s(1) 

✓ cA
cB
K (1)�1

◆
(6)

where K (1) = (vA/vB)exp((wA�wB)/kBT ) is the equilibrium constant of reaction
pathway (1). Note that in the case of phase separation, K (1) and s(1) can have
di�erent values inside and outside the droplet. If only reaction pathway (1) occurs,
droplets are passive despite the presence of the reaction and the system reaches a
thermodynamic equilibrium. No droplet divisions occur. Such a system exhibits
Ostwald ripening and after long times reaches an equilibrium that contains either a
single large droplet or no droplet.

Active droplets require an external energy supply that maintains the droplets
away from thermodynamic equilibrium at all times. The reaction A *) B can be
coupled to an externally supplied fuel C with reaction product C0 with chemical
potential di�erence 1µC =µC�µC0 >0. This second reaction pathway (2) obeys
equation (4) with 1µ=1µ(2) and

1µ(2) =µB�µA�1µC (7)

The corresponding reaction flux can be written as

s(2) = s(2) 

✓ cA
cB
K (2)�1

◆
(8)

with equilibrium constant K (2) =K (1) exp(1µC/kBT ). If both pathways are active
at the same time, the net reaction flux is s= s(1) + s(2). In this paper we consider the
case where an active droplet converts B to A inside the droplet mainly via the
reaction pathway (1) while outside the droplet material A is used to generate B
mainly via the reaction pathway (2) using the external fuel as an energy source (see
Fig. 2 and Supplementary Information). No chemical equilibrium can be reached
in this case because the equilibrium constants K (1) and K (2) imply incompatible
equilibrium conditions. The droplet is thus active.

Dynamics of active droplets.We consider a fluid that contains the
droplet-forming material B at concentration c= cB. The system segregates into two
coexisting phases that are separated by a sharp interface. We consider the limit of

strong segregation of phases by a sharp interface. Across the interface, chemical
potentials are continuous, µ+ =µ�, while the pressure exhibits a jump

P��P+ =2�H (9)

known as Laplace pressure. Here, � denotes surface tension and H denotes the
local mean curvature of the interface. The subscripts� and + refer to values at the
interface inside and outside the droplet, respectively. These thermodynamic
conditions determine the concentrations c� and c+ at the interface where both
phases coexist. As the Laplace pressure depends on local curvature, the equilibrium
concentrations also depend on curvature H . We express this dependence to linear
order by

c±' c(0)
± +��±H (10)

where c(0)
± denote the equilibrium concentrations of coexisting phases at a flat

interface and we have introduced the coe�cients �± to describe the e�ects of
interface curvature.

The droplet material B is produced by chemical reactions with total reaction
flux s, which is a function of concentration (see Fig. 3a and the section ‘Reaction
rates and energy supply’). The time evolution of the concentration field c is then
described by the reaction–di�usion equation

@t c=D±r2c+ s (11)

where D+ and D� denote the di�usion coe�cients outside and inside the droplet,
respectively. The evolution of the droplet shape is governed by the normal velocity
of the droplet interface

vn =
j�� j+
c�� c+

(12)

where j± =�n ·D±rc are the normal di�usion fluxes at the interface, inside and
outside the droplet, and n denotes the surface normal.

The reaction flux is typically positive (B is produced) outside the droplet, while
it is negative (A is produced) inside (see Fig. 3a). We expand the function s(c)
introduced in the section ‘Reaction rates and energy supply’ in terms of the
concentration variations inside and outside the droplet to linear order as (see
Supplementary Information)

s(c)'
(

⌫+�k+(c� c(0)
+ ) outside the droplet

�⌫��k�(c� c(0)
� ) inside

(13)

The reaction rates k± inside and outside the droplet are related to elasticity
coe�cients of the chemical reactions49. The fluxes of production of B molecules at
the equilibrium concentrations outside and inside the droplet are denoted ⌫+ and
⌫�, respectively. We call ⌫� turnover because it is the flux at which B molecules
disappear inside the droplet. The concentration field varies over the characteristic
length scales l± = (D±/k±)1/2 inside and outside the droplet, respectively.

At large distances r� l+ from the droplet, the net reaction flux s(c) vanishes
and the concentration reaches the constant value c1= c(0)

+ +⌫+/k+. The chemical
reactions thus generate a supersaturation

✏ = c1� c(0)
+

1c
(14)

where 1c= c(0)
� � c(0)

+ . This supersaturation drives the di�usion flux j+ toward the
droplet interface. Inside the droplet, droplet material is degraded, leading to a
concentration profile with minimal concentration in the droplet centre. This causes
a di�usion flux j� towards the centre (see Fig. 3b).

Data availability. The data that support the plots within this paper and
other findings of this study are available from the corresponding author
on request.
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I. CONTINUUM MODEL FOR ACTIVE DROPLETS

A. Free energy function and chemical rates

We consider an incompressible fluid containing two components: a component A that forms

the background fluid and a droplet material B that forms droplets by phase separation. Chemical

reactions convert the two components into each other. The concentration of the droplet material

B is denoted by c(r, t) where r is the position and t denotes time. The concentration of the

second component can be determined from c using the incompressibility condition. Therefore, the

free energy density f only depends on the concentration c. We use the following double-well free

energy function

f(c) =
b

2(∆c)2

(
c− c(0)−

)2(
c− c(0)+

)2

, (S.1)

where we have defined ∆c =
∣∣c(0)− − c(0)+

∣∣. Here, the positive parameter b characterizes molecular

interactions and entropic contributions. This free energy describes the segregation of the fluid in

two coexisting phases1: one phase rich in droplet material with c ≈ c(0)− and a diluted phase with

c ≈ c(0)+ .

The state of the system is characterized by the free energy

F [c] =

∫ [
f(c) +

κ

2

(
∇c

)2]d3r , (S.2)

where the integral is over the system volume. Here, the coefficient κ is related to surface tension

and the interface width2. The chemical potential µ̄ = δF [c]/δc, which governs demixing, reads

µ̄ =
b

(∆c)2
(
c− c(0)+

)(
c− c(0)−

)(
2c− c(0)− − c(0)+

)
− κ∇2c . (S.3)

The dynamics of the concentration field is described by the reaction-diffusion equation3,4

∂tc = m∇2µ̄+ s(c) . (S.4)

Here, m is a mobility coefficient of the droplet material. The source term s(c) describes chemical

reactions.

We choose the function s(c) to be linear in the phases outside and inside the droplet. We

connect these linear behaviors by a cubic interpolating polynomial:

s(c) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν+ + k+c
(0)
+ − k+c for c < c+c

−ν− + k−c
(0)
− − k−c for c > c−c

p(c) for c+c < c < c−c

, (S.5)
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where c+c and c−c are two characteristic concentrations and p(c) = a0 + a1c + a2c2 + a3c3 is a

cubic polynomial. The coefficients ai are determined uniquely by the conditions that s(c) and its

derivative are continuous functions:

p(c+c ) = ν+ + k+c
(0)
+ − k+c

+
c (S.6a)

p(c−c ) = −ν− + k−c
(0)
− − k−c

−
c (S.6b)

p′(c+c ) = −k+ (S.6c)

p′(c−c ) = −k− . (S.6d)

The reaction flux given in Eq. (S.5) describes a situation where an external energy source drives

the system away from equilibrium, see Methods section in the main text. Eqs. (S.3)–(S.5) define

the continuum model of active droplets.

B. Relation with the effective droplet model

The model described by Eq. (S.4) typically forms distinct phases, which are separated by an

interface. Considering a flat interface between two phases with bulk concentrations c = c(0)− and

c = c(0)+ , the free energy F given in Eq. (S.2) is minimized by the concentration profile

c∗(x) =
c(0)− + c(0)+

2
+

c(0)− − c(0)+

2
tanh

x

ŵ
, (S.7)

where x is a coordinate that is normal to the interface and ŵ = 2(κ/b)1/2 is the interface width2.

The surface tension, i.e. the free energy per unit area of the interface, is1

γ =

∫ ∞

−∞
F [c∗(x)]dx =

(∆c)2

6

√
κb . (S.8)

Two different bulk concentrations c− and c+ coexist across the interface for which the chemical

potential is equal on both sides. For a curved interface the pressure difference between the inside

and outside of the droplet is the Laplace pressure 2γH , where H is the mean curvature of the

interface. These two equilibrium conditions read

0 = µ̄(c−)− µ̄(c+) (S.9a)

0 = (c− − c+)µ̄(c−) + f(c+)− f(c−)− 2γH , (S.9b)

where c− and c+ denote the concentration at the interface inside and outside the droplet, respec-

tively. Using the free energy density as defined in Eq. (S.1), the concentrations that obey Eqs. (S.9)
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can be expressed to first order in H as

c− ≈ c(0)− + βγH (S.10a)

c+ ≈ c(0)+ + βγH , (S.10b)

which is valid for small surface tension, γ ≪ ∆c/(Hβ). Here, the coefficient β = 2/(b∆c)

describes the effect of Laplace pressure on the concentration at the interface. Note that γβ defines

a length scale, which is related to the interface width by γβ = ŵ∆c/6. Linearizing Eq. (S.4) at

the values c(0)+ and c(0)− outside and inside the droplet gives the linear reaction-diffusion equation

defined in the Methods section in the main text, with diffusivity D = mb.

We thus can relate the parameters b, κ, and m of the continuum model to the parameters γ, β±,

and D± of the effective droplet model. In particular, β+ = β− = β, and D+ = D− = D. In Table

S1 we list the parameters of both models.

C. Numerical methods

We solved Eq. (S.4) with (S.5) and (S.3) numerically using the xmds2 software package5 (ver-

sion 2.2.2) with an adaptive Runge-Kutta scheme of order 4/5, with tolerance 10−5. The Laplace

operator was evaluated by a spectral method, while the chemical rates were evaluated in real space.

Numerical calculations were performed in a finite volume with no flux boundary conditions.

We normalize concentration, length and time by ∆c = c(0)− − c(0)+ , ŵ and t0 = ŵ2/D, re-

spectively, where the characteristic length scale is ŵ = 2(κ/b)1/2. The relevant dimensionless

model parameters are c(0)+ /∆c, k±t0, ν±t0/∆c and c±c /∆c. In all numerical calculations, we chose

c(0)+ /∆c = 0 and k±t0 = 10−2.

1. Stability diagram

Using three dimensional calculations in Cartesian coordinates, we observed that droplet con-

figurations during the division of isolated single droplets were approximately axisymmetric. To

determine the stability diagram shown in Fig. 2C we therefore performed calculations in cylindri-

cal coordinates imposing axisymmetry. We used an axisymmetric cylindrical box with length 60ŵ

and radius 30ŵ, discretized with 120 and 60 points, respectively.

The initial conditions were given by a concentration profile that corresponded to a droplet

geometry of a slightly prolate ellipsoid with unequal half axes of length R/ŵ−0.1 and R/ŵ+0.1,
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Continuum model Effective droplet model

k+t0 k+τ0

k−t0 k−τ0

ν+t0/∆c ν+τ0/∆c

ν−t0/∆c ν−τ0/∆c

c(0)+ /∆c c(0)+ /∆c

c+c /∆c

c−c /∆c

β+/β−

D−/D+

∆c = c(0)− − c(0)+ ∆c = c(0)− − c(0)+

ŵ = 2(κ/b)1/2 w = 6β+γ/∆c

t0 = ŵ2/D τ0 = w2/D+

TABLE S1. Dimensionless parameters of the continuum model and the effective droplet model, together

with the characteristic concentrations, lengths and times used for normalization (bottom 3 rows). Note that

the parameters c±c /∆c of the continuum model capture properties of chemical reactions inside the interface

and therefore do not exist in the effective droplet model. In the continuum model we use a simple choice

of the free energy (Eq. (S.1)) for which β = β+ = β−, with β = 2/(b∆c), and D = D+ = D−, with

D = mb. The dimensionless parameter c(0)+ /∆c is unimportant for the dynamical behavior of the system

and only leads to a constant shift of the concentration profiles.

centered at the box center. The initial droplet size was chosen close to the stationary size in the

continuum model. As an estimate for the stationary size we typically chose R/ŵ = 0.9R̄s/w.

Here, R̄s is the stationary radius calculated in the effective droplet model and w = 6β+γ/∆c, see

Section I B. The concentration field at positions r was initialized by the function

c(r) =
c∞ + c(0)−

2
+

c∞ − c(0)−
2

tanh
d(r)

ŵ
. (S.11)

where d(r) is the oriented distance of r to the nearest point on the ellipsoid. The value of d(r) is

negative for points inside the droplet and positive for points outside. The concentration far from

the droplet is c∞ = ν+/k+ + c(0)+ .

6NATURE PHYSICS | www.nature.com/naturephysics 6

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3984



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

We calculated the dynamics of the concentration field over a time interval T/t0 = 104, for

different values of ν±t0/∆c. The parameters c±c related to the chemical reaction in Eq. (S.5)

were chosen as c+c /∆c = 0.25 and c−c /∆c = 0.75. Because close to the shape instability the

dynamics slows down, we may slightly overestimate the region of stability, since we cannot detect

the exact instability with the finite time intervals simulated. Contours shown in Fig. 1C correspond

to c/∆c = 0.5.

2. Calculations for multiple divisions

Several subsequent divisions break cylindrical symmetry. The calculations shown in Fig. 3A

were therefore performed in three dimensions using cartesian coordinates. We chose a cubic box

with side length L = 50ŵ and an equidistant discretization of 100 points along each dimension.

Initial conditions corresponded to a spherical droplet centered at r = (L/4, L/4, L/4). The

concentration field was initialized with c = c(0)− inside the droplet and c = c∞ outside. The

parameters for the calculations were ν−t0/∆c = 7 · 10−3, ν+t0/∆c = 2 · 10−3 and c+c /∆c =

c−c /∆c = 0.5. Surfaces shown in Fig. 3A correspond to c/∆c = 0.5.

7NATURE PHYSICS | www.nature.com/naturephysics 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3984



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

II. EFFECTIVE MODEL FOR ACTIVE DROPLETS

Using the effective droplet model defined in the Methods section in the main text, we discuss

steady state droplets and perform a linear stability analysis of the spherical droplet shape. We

determine conditions for a shape instability towards an elongated shape.

A. Droplet dynamics in spherical coordinates

Using spherical coordinates r, θ,φ centered on the droplet, the interface defining the droplet

surface is positioned at radial distance r = R(θ,φ). Away from the interface, the concentration

field c(r, θ,φ) obeys the reaction-diffusion equation

∂tc = D±∇2c+ s . (S.12)

Here, t denotes time and D+, D− are the diffusion coefficients outside (r > R(θ,φ)) and inside

(r < R(θ,φ)) the droplet, respectively. The reaction flux s is given by

s =

⎧
⎪⎨

⎪⎩

ν+ − k+(c+ − c(0)+ ) for r > R

−ν− − k−(c− c(0)− ) for r < R
. (S.13)

Here, reaction rates inside and outside the droplet are denoted by k±, c(0)± denote the equilibrium

bulk concentrations of coexisting phases near a planar interface. The reaction fluxes at equilibrium

concentrations are denoted by ν±. For the concentration c = c0, with c0 = −ν−/k− + c(0)− , the

reaction flux inside the droplet vanishes, while for c = c∞ with c∞ = ν+/k+ + c(0)+ the reaction

flux outside the droplet vanishes.

At the interface at r = R(θ,φ) we impose boundary conditions for the concentration:

c(R±) = c(0)± + β±γH(θ,φ) . (S.14)

These boundary conditions describe a concentration jump at the interface. They corresponds to

local thermodynamic equilibrium at a curved interface with surface tension γ. Here, R± denote

the limits of approaching the interface at radial distance R(θ,φ) from the outside or the inside,

respectively. The mean curvature of the interface is denoted by H and the coefficients β± describe

the change of the equilibrium concentration at the interface due to Laplace pressure 2γH .
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The normal velocity vn of the interface is proportional to the difference of normal fluxes inside

and outside6,

vn = n ·
j− − j+

c(R−)− c(R+)
, (S.15)

with flux j± = −D±∇c(R±) and unit vector n normal to the interface. The droplet shape

R(θ,φ) = R(θ,φ)er, where er denotes the unit vector in radial direction, can be parameterized

using the angles θ and φ. The interface velocity can be written as

∂R(θ,φ, t)

∂t
= vθe1 + vφe2 + vnn , (S.16)

where e1 = ∂R/∂θ and e2 = ∂R/∂φ are the two basis vectors of the tangential plane. Using

∂R/∂t = (∂R/∂t)er, the velocity components vθ and vφ can be obtained from the conditions

(∂R/∂t)eθ = 0 and (∂R/∂t)eφ = 0. Here, eθ and eφ are the local normalized basis vectors cor-

responding to θ and φ in spherical coordinates. The radial interface velocity ∂R/∂t = (∂R/∂t)·er

then reads
∂R

∂t
= vn

[
1 +

(
∂θR

R

)2

+

(
∂φR

R sin θ

)2
] 1

2

, (S.17)

where vn is given by (S.15).

B. Stationary states of spherical droplets

Stationary solutions to Eq. (S.12) with spherically symmetric concentration field can be ex-

pressed as

c̄(r) = A± + B±
er/l±

r
+ C±

e−r/l±

r
, (S.18)

where l± = (D±/k±)1/2 are characteristic length scales. Here, the coefficients A± are set by the

chemical reactions,

A± = ±ν±
k±

+ c(0)± . (S.19)

Regular behavior at r = 0 implies C− = −B−. For an infinite system, the concentration far from

the droplet reaches a constant value. This implies B+ = 0. Using the boundary conditions (S.14)

at the interface of a spherical droplet of radius R we obtain the remaining coefficients

C+ =

(
γβ+

R
− ν+

k+

)
R exp(R/l+) (S.20a)

B− =

(
γβ−
R

+
ν−
k−

)
R

2 sinh(R/l−)
. (S.20b)
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FIG. S1. Size dependence of droplet growth rates. Rate of droplet growth dR/dt as a function of droplet

radius R in a quasistatic limit with turnover ν− inside the droplet (red line) and without turnover ν− inside

the droplet (blue line). The zeros of dR/dt correspond to stationary radii. An unstable critical radius (white

circle) and a stable droplet radius (black circle) are indicated. Parameter values are: ν−τ0/∆c = −10−2

(red line) or ν−τ0/∆c = 0 (blue line), ν+τ0/∆c = 2 · 10−3 , k±τ0 = 0.01, c(0)+ = 0, β− = β+, D− = D+.

Here, w = 6β+γ/∆c and τ0 = D+/w2 are characteristic length and time scales.

The normal fluxes at the droplet interface are

j+(R) =
D+

R

(
γβ+

R
− ν+

k+

)(
1 +

R

l+

)
(S.21a)

j−(R) =
D−
R

(
γβ−
R

+
ν−
k−

)(
1− R

l−
coth

R

l−

)
. (S.21b)

Using these steady state fluxes in Eq. (S.17) and Eq. (S.15) provides a relation between dR/dt =

vn and the droplet radius R in a quasi-static limit. Steady state droplets exist for radii R = R̄ for

which dR/dt vanishes. These stationary radii thus obey

j+(R̄) = j−(R̄) . (S.22)
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Fig. S1 shows an example of dR/dt as a function of R in the presence (red line) and absence (blue

line) of chemical reactions inside the droplet. If chemical reactions are present, two steady state

radii denoted R̄c (white circle) and R̄s (black circle) exist, corresponding to a critical nucleation

radius and a stationary droplet radius, respectively. Both stationary radii are shown in Fig. 2A in

the main text.

In the limit of large characteristic lengths l± compared to the droplet radius R, the stationary

radii can be approximated as

R̄c ≈
γβ+

c∞ − c(0)+

, (S.23)

and

R̄s ≈

√
3D+(c∞ − c(0)+ )

ν−
, (S.24)

where we have used R ≪ l− and β±γ/[R̄(c(0)− − c(0)+ )] ≪ 1. The latter is obeyed for a sharp

interface, see section I B.

The critical radius estimated by Eq. (S.23) is closely related to the classical expression for the

critical nucleation radius of passive droplets. The critical nucleation radius depends on the super-

saturation ϵ = (c∞ − c(0)+ )/∆c, which, in the case of active droplets, is determined by chemical

reactions instead of the amount of material provided.

The stationary droplet radius given in Eq. (S.24) describes an inherently non-equilibrium sta-

tionary state that is maintained by opposing fluxes7.

C. Chemical turnover of stationary droplets

We define the droplet turnover time as the time after which the droplet material has been re-

placed on average. Consequently, the turnover time tR is given by the total amount N of droplet

material in the droplet, divided by the integrated flux J with which droplet material is turned into

component A by the reaction B → A,

tR =
N

J
. (S.25)

Here, N is given by

N =

∫

V

c−(r)dV , (S.26)

where c−(r) is the concentration field of droplet material inside the droplet, and V is the droplet

volume. In the stationary state, the reaction flux J is equal to the integrated outflux of droplet
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material across the droplet interface, which is given by

J = −
∮

S

j−(R)dA , (S.27)

where j−(R) is the diffusion flux of droplet material normal to the droplet surface S.

In a stationary state, j−(R) is given by Eq. (S.21b) and c−(r) by Eq. (S.18). We then have

N =
4

3
πR3

(
c(0)− − ν−

k−

)
+ 4πRl2−

(
ν−
k−

+
γβ−
R

)(
R

l−
coth

R

l−
− 1

)
(S.28)

J = 4πRD−

(
γβ−
R

+
ν−
k−

)(
R

l−
coth

R

l−
− 1

)
. (S.29)

Therefore, the turnover time of a stationary droplet is given by

tR =
c(0)− − ν−

k−

ν− + k−
γβ−
R

·
1
3

(
R
l−

)2

R
l−

coth R
l−

− 1
+

1

k−
. (S.30)

In the limit of R ≪ l− and γβ−/(c
(0)
− − c(0)+ ) ≪ R, we find

tR ≈ c(0)−
ν−

. (S.31)

D. Stability analysis of the spherical droplet shape

To analyze the linear stability of the stationary droplets, we linearize the dynamic equations in

the vicinity of the stationary state and identify the dynamic eigenmodes. The stationary state is

unstable with respect to a dynamic mode if the corresponding growth rate is positive.

1. Linearization at the stationary solution

We linearize the dynamic equations (S.12)–(S.15) and (S.17) around a stationary solution c̄(r),

which obeys Eqs. (S.18)–(S.22). Introducing small perturbations δc and δR of the concentration

field and the droplet shape, respectively, we write

c(r, θ,ϕ, t) = c̄(r) + δc(r, θ,ϕ, t) , (S.32)

and

R(θ,ϕ, t) = R̄ + δR(θ,ϕ, t) . (S.33)

The concentration perturbation then obeys

∂tδc = D±∇2δc− k±δc . (S.34)
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The boundary conditions (S.14) become

δc(R̄±) = β±γδH − c̄′(R̄±)δR , (S.35)

where δH = H(R̄ + δR) − H(R̄). Using Eqs. (S.15) and (S.17), the time dependence of the

droplet shape perturbation is described to linear order by

(c(0)− − c(0)+ )∂tδR = D+∂rδc(R̄+)−D−∂rδc(R̄−) +
[
D+c̄

′′(R̄+)−D−c̄
′′(R̄−)

]
δR . (S.36)

2. Dynamic modes and relaxation spectrum

The linearized dynamics of droplet perturbations near the steady state defines a linear operator

L by

∂t

⎛

⎝ δc

δR

⎞

⎠ = L

⎛

⎝ δc

δR

⎞

⎠ . (S.37)

The operator L has eigenfunctions (ci, Ri)ᵀ with corresponding eigenvalues µi, where i is the

mode index. These modes obey

L

⎛

⎝ ci

Ri

⎞

⎠ = µi

⎛

⎝ ci

Ri

⎞

⎠ . (S.38)

The linear droplet dynamics can thus be decomposed in eigenmodes with amplitude Ai as
⎛

⎝ δc

δR

⎞

⎠ =
∑

i

Ai

⎛

⎝ ci

Ri

⎞

⎠ eµit , (S.39)

where the sum is over all eigenmodes. Thus, the eigenfunctions of L correspond to dynamic

modes of the system. For µi < 0, the values −µi are relaxation rates. The steady state is stable if

all µi < 0.

3. Determination of eigenmodes

We determine the eigenmodes and the spectrum of relaxation rates of a stationary droplet with

radius R̄. Because of the spherically symmetric reference state, we introduce radial and angular

indices i = (n,m, l) and use the ansatz
⎛

⎝cnlm(r, θ,φ)

Rnlm(θ,φ)

⎞

⎠ =

⎛

⎝cnl(r)

ϵnl

⎞

⎠Ylm(θ,φ) , (S.40)
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where Ylm are spherical harmonics and the corresponding eigenvalues will be denoted µnl. Using

Eq. (S.34) with r2∇2Ylm = l(l + 1)Ylm, the radial part of the eigenfunctions obeys
(

1

r2
∂

∂r
r2

∂

∂r
− (λ±

nl)
2 − l(l + 1)

r2

)
cnl(r) = 0 , (S.41)

where

(λ±
nl)

2 =
k± + µnl

D±
. (S.42)

The boundary conditions (S.35) at r = R̄ can be written as

cnl(R̄+) = a+l ϵnl (S.43a)

cnl(R̄−) = a−l ϵnl (S.43b)

with

a±l = γβ±
hl

R̄2
− c̄′(R̄±) , (S.44)

where8 hl = (l2 + l − 2)/2. From Eqs. (S.43) we obtain a boundary condition at r = R̄:

cnl(R̄+)

cnl(R̄−)
=

a+l
a−l

. (S.45)

Using Eq. (S.36), we obtain a second boundary condition
(
c(0)− − c(0)+

)
µnl = D+c̄

′′(R̄+)−D−c̄
′′(R̄−) +D+a

+
l

c′nl(R̄+)

cnl(R̄+)
−D−a

−
l

c′nl(R̄−)

cnl(R̄−)
. (S.46)

The boundary conditions (S.45) and (S.46) provide jump conditions for both the values and the

first derivatives of the radial modes cnl(r) at r = R̄.

4. Radial profiles and relaxation rates of dynamic modes

When solving Eq. (S.41) with Eq. (S.42) to determine the dynamic modes of the system, we

have to distinguish the cases µnl < −k± and µnl > −k±, for which the sign of (λ±
nl)

2 differs. Near

an instability of the droplet shape, an eigenmode exists for which µnl changes sign. Therefore,

to discuss this instability, it is sufficient to consider the case µnl > −k±. In this case, (λ±
nl)

2 is

positive and solutions to Eq. (S.41) are given by modified spherical Bessel functions kl(λ±
nlr) and

il(λ
±
nlr). In order to obtain solutions that are finite at r = 0 and which do not diverge for large r,

we have

cnl(r) =

⎧
⎪⎨

⎪⎩

kl(λ
+
nlr) for r > R̄

Cnl il(λ
−
nlr) for r < R̄

, (S.47)
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where the coefficient Cnl is determined by boundary conditions (S.45) as

Cnl =
a−l kl(λ

+
nlR̄)

a+l il(λ
−
nlR̄)

. (S.48)

The boundary condition (S.46) becomes

(
c(0)− − c(0)+

)
µnl = D+c̄

′′(R̄+)−D−c̄
′′(R̄−)+D+a

+
l λ

+
nl

k′l(λ
+
nlR̄)

kl(λ
+
nlR̄)

−D−a
−
l λ
−
nl

i′l(λ
−
nlR̄)

il(λ
−
nlR̄)

. (S.49)

Using λ±
nl = ((k±+µnl)/D±)1/2, Eq. (S.49) becomes an implicit equation for the unknown eigen-

values µnl. This equation typically has either no solution or one solution. We identify the largest

eigenvalue for given l with n = 1.

In order to determine the full spectrum µnl of eigenmodes, we have to consider the case

µnl < −k±. We then define (λ±
nl)

2 = −(k± + µnl)/D± and the solutions to Eq. (S.41) are of

the form C±
nljl(λ

±
nlr) +D±

nlyl(λ
±
nlr), where jl(z) and yl(z) denote spherical Bessel functions, and

the coefficients Cnl and Dnl are determined by boundary conditions. The functions jl(z) and yl(z)

behave for large r as jl(z) ∼ z−1 sin(z − lπ/2) and yl(z) ∼ z−1 cos(z − lπ/2). Eq. (S.46) now

has an infinite set of solutions µnl for n > 1, which we order such that µnl > µn+1,l. In an infinite

system, the set µnl approaches a continuous spectrum.

5. Instability of stationary spherical droplets

The droplet shape is unstable if at least one mode with µ1l > 0 exists. We can obtain a criterion

for this instability by using µnl = 0 in Eq. (S.49). This leads to

0 = D+c̄
′′(R̄+)−D−c̄

′′(R̄−) +
D+a

+
l

l+

k′l(R̄/l+)

kl(R̄/l+)
− D−a

−
l

l−

i′l(R̄/l−)

il(R̄/l−)
, (S.50)

which is a condition for the radius R̄ at which the shape becomes unstable with respect to a

deformation characterized by l.

Different modes l can become unstable. The case l = 0 corresponds to changes of the radius. A

droplet with µ10 < 0 has a stable radius R̄. For l = 1 there always exists one marginal mode with

µ1m = 0, which corresponds to a translation of the steady state and does not lead to an instability.

The first mode that becomes unstable and changes the droplet shape is the elongation mode l = 2.

Fig. S2 shows numerically determined values of the largest relaxation rate µ1l for l = 0, 1, 2

and 3 as a function of supersaturation ϵ far from the droplet. The figure reveals that µ12 changes

sign and becomes positive as ϵ is increased, indicating the shape instability.
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FIG. S2. Eigenvalues µ1l as a function of supersaturation ϵ. At the onset of the instability (red dot)

the second mode becomes unstable, leading to droplet deformation. For larger values of ϵ, higher modes

become unstable as well. The same parameters as in Fig. 2A (main text), with ν−/ν0 = 1. Stationary and

stable radii were used (µ10 < 0).

Eq. (S.49) can be solved numerically. An approximation of the eigenvalues that is valid in the

limit of weak chemical reactions R ≪ l+ is

µ1l ≃ (l − 1)
D+

∆cR̄2

[
(
c∞ − c(0)+

)
− γ

2R̄

(
(4 + 3l + l2)β+ + l(l + 2)

β−D−
D+

)]
. (S.51)

For modes l ≥ 2, the spherical droplet becomes unstable for R̄ > Rl which in this limit is given

by

Rl ≈ γ
(4 + 3l + l2)D+β+ + l(l + 2)D−β−

2D+(c∞ − c(0)+ )
. (S.52)

This expression shows that the elongation mode l = 2 is the first mode to become unstable. This

provides an approximation for the critical radius Rdiv of droplet division,

Rdiv ≃ γ
7β+ + 4β−

D−
D+

c∞ − c(0)+

. (S.53)
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in the limit R ≪ l+. Using expression (S.24) for the stationary radius R̄s, we can approximate the

critical value of the supersaturation

ϵdiv ≃
1

D+

(ν−
3

)1/3 (
(7β+D+ + 4β−D−)γ

)2/3 (S.54)

for which stationary droplets undergo a shape instability. This expression approximates the in-

stability line shown in Fig. 2B (red line). Eq. (S.54) implies a scaling ν− ∼ ϵ3div for R ≪ l+.

Finally, the droplet radius for which the stationary droplet becomes unstable can be approximated

for R ≪ l+ as

Rdiv ≃
(
3(7β+D+ + 4β−D−)γ

ν−

)1/3

. (S.55)

This relation can be used to estimate typical sizes of droplets that undergo a shape instability and

divide. Note that the approximation for the droplet radius at the onset of the shape instability in

the limit R ≪ l+ given in Eq. (S.53) approaches the instability condition of growing aggregates

discussed by Mullins-Sekerka9. Note, however, that the approximate expression Eq. (S.55) in

this limit for the onset of instability does not exist in the Mullins-Sekerka case. We discuss the

relationship between our model and the Mullins-Sekerka instability in the next section.
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III. RELATIONSHIP TO MULLINS-SEKERKA INSTABILITY

The shape instability leading to droplet division described in this work is related to the Mullins-

Sekerka shape instability of growing aggregates. Here we discuss the initial shape change in the

linear regime valid close to the shape instability for small amplitudes. We compare the behavior

of this linear instability for active droplets and the Mullins-Sekerka case.

Consider a spherical particle or droplet perturbed by a small shape deformation. Using a de-

composition of infinitesimal shape changes by spherical harmonics, the mode with l = 0 corre-

sponds to a changing radius R0(t), the modes with l = 1 generate pure translations, and the modes

with l = 2 are the shape deformation modes that become unstable first according to Eq. (S.52).

We can thus ignore the modes with l = 1 and focus here on the radius change and the dynamics of

the modes with l = 2, which are most relevant for the droplet division problem. Without loss of

generality, we consider the case m = 0. Following the arguments of Mullins and Sekerka9, we ex-

press the shape of a droplet as a function of the azimuthal and polar angles for a small deformation

by a mode with l = 2:

R(θ,φ; t) ≃ R0(t) + ϵ2(t)Ŷ20(θ,φ) , (S.56)

where ϵ2 ≪ R0, Ŷ20(θ,φ) = Y20(θ,φ)/Y20(0, 0) and we have neglected modes with l > 2. For

such a perturbation, the interface moves locally with a radial velocity v = ∂R/∂t, which reads

v(θ,φ) ≃ dR0

dt
+

dϵ2
dt

Ŷ20(θ,φ) . (S.57)

A. Droplet with chemical reaction

In our model of chemically active droplets, we consider a droplet in the vicinity of the stationary

radius R̄s. We can express the droplet radius as R0(t) = R̄s + ϵ0(t). For small perturbations of

the stationary state, ϵ0, ϵ2 ≪ R̄s, the growth rates are given by dR0/dt = µ10ϵ0(t) and dϵ2/dt =

µ12ϵ2(t), see Eq. (S.39) in Section II. At the stationary radius R0 = R̄s, the volume growth is zero,

dR0/dt = 0, so that the l = 2 mode determines the radial velocity,

v(θ,φ) ≃ µ12ϵ2(t)Ŷ20(θ,φ) . (S.58)

If the mode l = 2 is unstable, µ12 > 0, we find for ϵ2 > 0 that v(0,φ) > 0 and v(π/2,φ) < 0.

The droplet thus elongates along the long axis, and constricts along the waistline, see Fig. S3A. If
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we start sufficiently close to the stationary radius, R0 ≈ R̄s, contributions from the dynamics of

R0(t) can be neglected as µ10 < 0 and R0(t) thus approaches the stationary value.

B. Mullins-Sekerka model

In the case of the Mullins-Sekerka model, droplets grow with dR0/dt > 0 if R0 > Rc, where

Rc denotes the critical nucleation radius. These growing droplets may undergo a shape instability

corresponding to mode l when the radius reaches the value9

Rms
l = γ

(4 + 3l + l2)D+β+ + l(l + 2)D−β−

2D+(c∞ − c(0)+ )
. (S.59)

When modes with l > 2 become unstable they lead to shape deformations that grow into dendritic

structures10, while the modes with l = 2 are insufficient to generate complex shape changes9. To

show this, we follow the arguments outlined in Ref. [9] and consider an instability of a mode with

l = 2, which grows with the rate

µ12 =
1

R0

R0 −Rms
2

R0 −Rc

dR0

dt
. (S.60)

Here, Rms
2 with Rms

2 > Rc is the radius for which the l = 2 mode becomes unstable in the Mullins-

Sekerka model, see Eq. (S.59). The interfacial velocity behaves in the Mullins-Sekerka model as

v(θ,φ) ≃
(
1 +

R0 −Rms

R0 −Rc

ϵ2
R0

Ŷ20(θ,φ)

)
dR0

dt
. (S.61)

Thus, for sufficiently small amplitudes ϵ2 of the l = 2 mode, the droplet radius R increases in all

spatial directions, v(θ,φ) > 0 for all angles θ,φ. This corresponds to a weak ellipsoidal deforma-

tion of the growing spherical droplet. As the droplet grows, the aspect ratio of this ellipsoid stays

constant or approaches 1 as was shown in Ref. [9], see also Fig. S3B. Therefore, an unstable l = 2

mode does not trigger a shape instability of an initially spherical object in the Mullins-Sekerka

model. Thus, instabilities of modes with l > 2 are required for the Mullins-Sekerka instability to

take effect.

C. Comparison of both instabilities

These arguments show that there are interesting differences between the instability in our model

and in the Mullins-Sekerka model. In the Mullins-Sekerka model an instability of a mode with
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time

A B

FIG. S3. Shape deformations resulting from an instability of the deformation mode with l = 2 for a

chemically active droplet (A) and a growing droplet in the Mullins-Sekerka model (B). The black arrows

indicate the direction of interfacial motion. (A) In the model of chemically active droplets, a stationary

droplet constricts around the waistline as the amplitude of the perturbation increases. (B) In the Mullins-

Sekerka model, an unstable l = 2 mode gives rise to an ellipsoidal shape with an aspect ratio that approaches

1 as the droplet grows. This implies that the shape is not unstable with respect to the l = 2 mode even if

this mode is linearly unstable9. The shape deformations shown in A and B correspond to the linear regime

valid if amplitudes are small. Radial growth in B is reduced to emphasize the shape changes.

l = 2 does not directly trigger a shape instability because the droplet grows at the same time as

the instability develops. Conversely, for the chemically active droplets discussed in the present

manuscript, the instability of the modes with l = 2 generates to linear order a shape change that

leads to a dumbbell shape. In the nonlinear regime beyond the instability, the shape then undergoes

a dramatic shape change which subsequently pinches off in two droplets.

Another difference between the models is that in our system the chemical reaction rates to-

gether with the diffusion coefficients introduce the length scales l±, which do not exist in the

Mullins-Sekerka case. Consequently, the instability condition of droplet shape, obtained by solv-

ing Eq. (S.49), is generally different from the Mullins-Sekerka case. The expression for the insta-

bility condition for chemically active droplets approaches the one of the Mullins-Sekerka model

given in Eq. (S.59) in the limit of large l±, see Eq. (S.52).
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The different waistline dynamics between our model and in the Mullins-Sekerka model also

leads to different behaviors in the nonlinear regime. In the case of the Mullins-Sekerka model,

modes with smaller wavelengths become unstable as the volume increases. In the nonlinear

regime, this leads to large dendritic structures. In our model the droplet does not grow and modes

with shorter wavelength thus remain stable. The chemically active droplet constricts at the waist-

line, which subsequently leads to droplet division.
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IV. EXAMPLES OF PARAMETER VALUES FOR DIVIDING DROPLETS

In Table S2, we provide five examples of parameter values for which droplets become unsta-

ble. The corresponding stationary radii are shown in Fig. S4 as a function of the supersaturation.

Case I is based on the properties of colloidal droplets or liquid protein phases with low interfa-

cial tension11–13. We find that droplet division at sizes of several micrometers could be realized

experimentally, see Fig. S4 and Table S1. In case I the division radius is Rdiv ≈ 3µm. Case II is

based on the properties of water/oil interfaces13–16. This example shows that even for these larger

interfacial tensions as compared to case I, droplets can still have a division radius of the order of

micrometers. Case III shows the effect of different diffusion constants and length-scales inside

and outside the droplet, with division radii again in the micrometer range. Cases IV and V explore

parameter regimes for which dividing droplets are larger. Case IV is based on case I, but with a

longer turnover time. This leads to an increased division radius of 10µm. Case V is an example

for division at even larger radii with Rdiv ≈ 140µm. To obtain this droplet size, large diffusion

constants D are required, and the interfacial width w and the turnover time tR also have to be large.

This can be understood by considering Eq. (S.53), which implies that for R ≪ l±, the division

radius scales as Rdiv ∼ (DwtR)1/3.

Our analysis thus shows that dividing droplets with sizes of several micrometers could be

achieved experimentally. Simple choices of realistic parameter values typically lead to such

droplet sizes. However, larger droplets from 100 micrometers to millimeters may turn out to be

more difficult to achieve. To obtain such droplets in case V we had to choose large diffusion coef-

ficients and slow reaction rates. We therefore propose that dividing active droplets as presented in

this work provide simple models of micrometer sized protocells.
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m

I
II
III
IV
V

FIG. S4. Stationary radius R̄ as a function of the supersaturation ϵ. The curves correspond to the five

parameter sets given in Table S2, and are calculated using Eq. (S.22). Dotted lines indicate an unstable

droplet size (l = 0 mode) and dashed lines indicate a shape instability (l = 2 mode), see Eq. (S.49). Stable

droplets are shown as solid lines. The red dots show the onset of the shape instability. We report the

respective stationary radii and supersaturations in Table S2.
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Quantity Unit Case I Case II Case III Case IV Case V

D− µm2/s 10 10 1 10 1000

D+ µm2/s 10 10 100 10 1000

w nm 10 1 10 10 100

γ mN/m 10−3 10 10−3 10−3 10

β− = w∆c
6γ

M·m2/N 2 · 10−4 2 · 10−8 2 · 10−4 2 · 10−4 1.7 · 10−6

β+ = w∆c
6γ

M·m2/N 2 · 10−4 2 · 10−8 2 · 10−4 2 · 10−4 1.7 · 10−6

c
(0)
− mM 100 103 100 100 103

c
(0)
+ mM 1 10−3 1 1 10−3

tR s 100 100 10 4000 104 (≈ 3 h)

l− mm 0.1 5 0.1 0.1 5

l+ mm 0.1 5 0.01 0.1 5

ν− =
c
(0)
−
tR

mM/s 1 10 10 2.5 · 10−2 0.1

ν+ = ϵ∆ck+ nM/s 200 0.3 2 · 105 100 30

k− =
D−
l2−

1/s 10−3 4 · 10−7 10−4 10−3 4 · 10−5

k+ =
D+

l2+
1/s 10−3 4 · 10−7 1 10−3 4 · 10−5

R̄s using Eq. (S.22) µm 3 1 3 10 140

R̄c using Eq. (S.22) µm 0.7 0.2 0.7 1.7 20

Rdiv = R̄s µm 3 1 3 10 140

ϵdiv 2 · 10−3 8 · 10−4 2 · 10−3 10−3 8 · 10−4

k+τ0 10−8 4 · 10−13 10−5 10−8 5 · 10−10

k−τ0 10−8 4 · 10−13 10−9 10−8 5 · 10−10

ν+τ0/∆c 2 · 10−11 3 · 10−17 2 · 10−9 10−11 3 · 10−13

ν−τ0/∆c 10−7 10−9 10−7 2.5 · 10−9 10−9

c
(0)
+ /∆c 0.01 10−6 0.01 0.01 10−6

β+/β− 1 1 1 1 1

D−/D+ 1 1 0.01 1 1

∆c = c
(0)
− − c

(0)
+ mM 99 103 99 99 103

w nm 10 1 10 10 100

τ0 = w2/D+ µs 10 0.1 1 10 10

TABLE S2. Examples for parameter values of the effective model for five different cases. Both dimensional and

dimensionless parameters are shown. Our choice of parameters that are related to phase separation (D±, w, γ, and

c(0)± ) is based on measured values in liquid protein phases11–13 (cases I, III and IV) and in water/oil interfaces13–16

(case II). Case V explores extreme parameter ranges to create large droplet radii. The parameters describing chemical

reaction rates can vary widely depending on concentration levels and specific reactions considered16. The reaction

rates k± and ν± are related to elasticity coefficients17 for which only very few measured values have been reported.

Instead of specifying k± and ν± directly, we therefore choose experimentally relevant turnover times11 tR and length-

scales l± that are larger than resulting droplet radii such that the droplets are approximately homogeneous. The

remaining parameters (β±, ν±, and k±) can be determined using the expressions given in the first column of the

Table. The supersaturation ϵdiv at which the stationary radius R̄s becomes unstable, µ12 = 0, is obtained by linear

stability analysis.
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V. REACTION RATES WITH BROKEN DETAILED BALANCE

In our models, chemical reaction rates and diffusion fluxes are maintained in a non-equilibrium

steady state. They are driven by the free energy supplied by the chemical potential difference of

a higher energy chemical fuel C and a lower energy waste product C ′, which are maintained by

external reservoirs. We illustrate these non-equilibrium conditions in a simple model based on

four components A,B,C,C ′ in a system that exhibits phase separation of the two components A

and B.

The chemical potentials of components n = A,B,C,C ′ can be expressed as

µn = kBT ln(vncn) + wn , (S.62)

where vn denote molecular volumes. The first term describes the entropy of molecular rearrange-

ments. The contribution wn captures internal free energies of molecules as well as effects of

interactions between molecules2. Therefore, wn depends on composition. For simplicity, we only

consider here the dependence on the concentrations of A and B, wn(cA, cB). For a phase-separated

system at thermodynamic equilibrium, the chemical potentials of all components n are equal in

both phases,

µ+
n = µ−n , (S.63)

where ”+” and ”-” refer to the phases outside and inside the droplet, respectively. Because of the

dependence of wn on cA and cB, the concentrations of all molecular species differ in both phases,

c+n ̸= c−n , with
c+n
c−n

= exp

(
w−n − w+

n

kBT

)
. (S.64)

This difference implies that molecules of a given species typically have a higher affinity to one

phase as compared to the other as a result of interactions with other molecules.

The case of a B-rich droplet at equilibrium (without chemical reactions) is illustrated in Fig.

S5. Here we consider the case where the concentrations cC and cC′ are higher outside the droplet

than inside, corresponding to a smaller affinity to the droplet phase.

We choose a system where the chemical potential µB is larger than µA, such that ∆µ(1) = µB−

µA > 0, and where the chemical potential µC is large enough that ∆µ(2) = µB−µA−µC+µC′ < 0,

see Fig. S5 B. Note that the value of µC can be set by varying the concentration in the external

reservoir.
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FIG. S5. Concentration profiles and reaction rates in a four-component model including fuel and waste.

Radial profiles of concentrations (A) and chemical potentials (B) of molecular species A, B, C and C ′

for an equilibrium droplet without chemical reactions. The differences in chemical potentials ∆µ(1) and

∆µ(2) can drive chemical reactions. In the presence of chemical reactions, radial concentration profiles

change slightly (C). The corresponding reaction fluxes are shown in (D). The active droplet shown in (C)

correspond to the stationary unstable spherical droplet shown in Fig. 1C of the main text which undergoes

a division. Parameter values for (A) and (B) are c(0)− /∆c = 1.1, c(0)+ /∆c = 0.1, vA∆c = 0.87, c+C/∆c =

0.15, c+C′/∆c = 0.05, (w−C − w+
C )/kBT = 2, (w−C′ − w+

C′)/kBT = −0.3, ∆w(1)
+ /kBT = −6.17, and

∆w(2)
+ /kBT = 0.135. In (C) and (D) the same parameters are used together with the reaction parameters

k(1)t0 = 0.0065, k(2)t0∆c = 0.017, ϵ(1)± = 0, and ϵ(2)± = 0. See Table S1 for the definitions of the time

scale t0 and the concentrations ∆c that are used for normalization.

The system can be driven away from equilibrium by the chemical reactions (1) and (2), which

are driven by the chemical potential differences ∆µ(1) and ∆µ(2). The flux of the reaction (1),

B ! A, can be written as (see Methods section in the main text)

s(1) = s(1)←

[
exp

(
−∆µ(1)

kBT

)
− 1

]
, (S.65)

which obeys a local detailed balance condition. Here, the reaction amplitude s(1)← is in general
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concentration dependent. Similarly, for the reaction (2), A+ C ! B + C ′, the reaction flux is

s(2) = s(2)→

[
1− exp

(
∆µ(2)

kBT

)]
. (S.66)

Considering these expressions, we find for the situation illustrated in Fig. S5 B that s(1) < 0 and

s(2) > 0 in both phases, so that reaction (1) produces A molecules, while reaction (2) produces

B molecules, both inside and outside the droplet. However, the reaction amplitudes s(1)← and s(2)→

can vary strongly with concentration and therefore the magnitudes of the fluxes s(1) and s(2) differ

inside and outside the droplet, see Fig. S5 C. The total reaction flux

s = s(1) + s(2) (S.67)

does not obey a local detailed balance condition. The sign of s depends not only on the chemical

potential differences, but also on the reaction amplitudes s(1)← and s(2)→ , which depend on local

concentrations. For example, the reaction amplitude s(1)← is in general a function of concentrations.

For vanishing concentration of B, reaction (1) cannot proceed in backward direction and s(1)← = 0.

we therefore write s(1)← = cBf(cA, cB, cC , cC′). In the simplest case f is constant. We thus consider

s(1)← ≈ cBk
(1) , (S.68)

where k(1) is a concentration-independent reaction constant. Using a similar argument for reaction

(2), we consider

s(2)→ ≈ cC cA · k(2) , (S.69)

with reaction constant k(2).

We can now discuss a typical scenario that corresponds to production of A molecules inside the

droplet and production of B molecules outside (see Fig. S5 and Methods section in the main text).

The amplitude s(2)→ is smaller inside the droplet where the concentrations cC and cA are small, as

compared to outside. Furthermore s(1)← is smaller outside the droplet, where the concentration cB

is small compared to inside. The total reaction flux s then is typically negative inside the droplet

and positive outside (see Figs. 4 and S5).

We can relate this detailed description of the chemical reactions to the simplified representation

of the chemical reactions given in Eq. (S.5). First, using (S.65) and (S.66), we have

s(1) ≃ k(1)

(
cA exp

[
wA − wB

kBT

]
− cB

)
(S.70)
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and

s(2) ≃ k(2)

(
cCcA − cC′cB exp

[
wB − wA − wC + wC′

kBT

])
, (S.71)

where we have considered the simple case where molecular volumes do not change during chem-

ical reactions, vA = vB and vC = vC′ .

We neglect for simplicity the contributions of the molecules C and C ′ to the total volume,

cA ≃ 1

vA
− cB . (S.72)

The concentration c in Eq. (S.5) is c = cB, and the variables c(0)± in Eq. (S.1) correspond to the

equilibrium concentrations c±B of B molecules inside and outside the interface. We can now iden-

tify

ν± = ±k(1)

[(
1

vA
− c(0)±

)
exp

[
w±

A − w±
B

kBT

]
− c(0)±

]

±k(2)

[
c±C

(
1

vA
− c(0)±

)
− c±C′c

(0)
± exp

[
w±

B − w±
A − w±

C + w±
C′

kBT

]]
(S.73)

and

k± = k(1)

[
exp

[
w±

A − w±
B

kBT

]
+ 1

]
+ k(2)

[
c±C + c±C′ exp

[
w±

B − w±
A − w±

C + w±
C′

kBT

]]

−k(1)

(
1

vA
− c(0)±

)
exp

[
w±

A − w±
B

kBT

]
1

kBT

d(wA − wB)

dc

∣∣∣∣
c
(0)
±

(S.74)

+k(2)c±C′c
(0)
± exp

[
w±

B − w±
A − w±

C + w±
C′

kBT

]
1

kBT

d(wB − wA − wC + wC′)

dc

∣∣∣∣
c
(0)
±

.

These expressions show that the parameters ν± and k± depend explicitly on the fuel concentra-

tion cC and the concentration cC′ of the waste product. Furthermore, they depend on molecular

interactions described by the energies w±
n .

Thus, the active droplet system defined in the Methods section in the main text results from

the more detailed model of chemical reactions described here. The dimensionless parameters

that need to be specified are: c(0)− /∆c, c(0)+ /∆c, vA∆c, c+C/∆c, c+C′/∆c, exp[(w−C − w+
C )/kBT ],

exp[(w−C′ −w+
C′)/kBT ], exp[∆w(1)

+ /kBT ], exp[∆w(2)
+ /kBT ], k(1)t0, k(2)t0∆c, and ϵ(1)± , ϵ(2)± , and we

consider for simplicity the limit of large diffusion coefficients of C and C ′, for which cC and cC′

are constant inside and outside of the droplet. Here, we denoted internal energy differences of

reactions (1) and (2) as ∆w(1)
± = w±

A − w±
B , ∆w(2)

± = w±
B − w±

A − w±
C + w±

C′ , and derivatives of

the internal energy with respect to the concentration of B as ϵ(1)± = ∆c
kBT

d(wA−wB)
dc

∣∣∣
c
(0)
±

and ϵ(2)± =
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∆c
kBT

d(wB−wA−wC+wC′ )
dc

∣∣∣
c
(0)
±

. We can calculate the concentrations c−C , c−C′ and cA using Eq. (S.64)

and Eq. (S.72). Thus the simplified models of chemical reactions discussed in the main text can

be related to a more detailed description of the reactions including explicit concentrations of fuel

and waste. An example of a stationary droplet is shown in Fig. S5.

29NATURE PHYSICS | www.nature.com/naturephysics 29

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3984



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

1 Desai, R. C. & Kapral, R. Dynamics of Self-organized and Self-assembled Structures (Cambridge Uni-

versity Press, 2009).

2 Cahn, J. W. & Hilliard, J. E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem.

Phys. 28, 258–267 (1958).

3 Glotzer, S. C., Stauffer, D. & Jan, N. Monte Carlo simulations of phase separation in chemically reactive

binary mixtures. Phys. Rev. Lett. 72, 4109–4112 (1994).

4 Christensen, J. J., Elder, K. & Fogedby, H. C. Phase segregation dynamics of a chemically reactive

binary mixture. Phys. Rev. E 54, R2212–R2215 (1996).

5 Dennis, G. R., Hope, J. J. & Johnsson, M. T. XMDS2: Fast, scalable simulation of coupled stochastic

partial differential equations. Comput. Phys. Commun. 184, 201–208 (2013).

6 Bray, A. Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994).
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