Overview

- The Scientific Method: Then and Now
- Reproducible Research
- Exploratory Data Analysis
- Clustering
- Biclustering
- Community Detection
- Correlation Mining
The Scientific Method
Paradigm Shift

Traditional Scientific Method: Hypothesis Driven

- Formulate a hypothesis
- Collect data to confirm/refute hypothesis

Modern Scientific Method: Data Driven

- Acquire data from high-throughput measurement technologies
- Mine the data for possible hypotheses
- Use the data again to test selected hypotheses
General Principle: If you have enough data, and you ask enough questions, you are bound to find something interesting, just by chance.

Bob: I found a needle in a haystack!

Amy: That seems very surprising. How many haystacks did you look in?

Bob: A thousand.

Amy: Oh, maybe that’s not so surprising.
Two Facets of Reproducible Research

I. Reproducibility of scientific analysis: Can we replicate the analysis?
 ▶ Public access to raw data and preprocessing steps
 ▶ Public access to general and special purpose software
 ▶ Careful step-by-step documentation of data analysis

II. Reproducibility of scientific conclusions: Are the conclusions true?
 ▶ Are data, methods, and assumptions of initial study sound?
 ▶ Are results of initial study robust?
 ▶ Do similar experiments with different data yields the same conclusion?
Reproducibility Crisis

2015: Re-examination of 100 psychology studies
- About 33 studies were reproducible

2012: Re-examination of 53 landmark studies in oncology and hematology.
- Only 6 studies were reproducible

2009: Re-examination of 18 gene expression studies
- Only 2 studies were reproducible
Lack of Reproducibility: Some Causes

Experimental Process

- Cognitive bias: Favor supporting data over contradictory data
- Fabrication of data and/or mis-use of data analysis (infrequent)
- Change the hypothesis after seeing the data
- Try out lots of hypotheses until you find one supported by data

Publication Process

- Submission bias (of researcher): Only submit positive results
- Publication bias (of journal): Only publish positive results

- 50% selectively reported only studies that were successful
- 58% looked at initial results, and then decided if they should collect more data
- 43% threw out “bad” data
- 35% reported unexpected findings as predicted from the outset
Exploratory Data Analysis
Exploratory Data Analysis

First look at a data set, typically in the form of a matrix of numbers.

- Visualization
- Identifying patterns or regularities of interest

Preliminaries:

- Identifying and addressing outliers and extreme values
- Imputing missing values
- Normalization: removing systematic differences between samples
- Transforming data values using logarithm or other functions
- Checking distributional/model assumptions
Finding Patterns

More Than Coincidence?

A CUMBERSOME APPARATUS

SOME CUCUMBERS AND ASPARAGUS

Drawing by B. Kliban
Univariate Sample $x = x_1, \ldots, x_n$

Statistics

- Sample mean $m(x) = \bar{x} = n^{-1} \sum_{i=1}^{n} x_i$

- Sample variance $s^2(x) = n^{-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ and SD $s(x)$

- Standardized sample \tilde{x} with $\tilde{x}_i = (x_i - \bar{x})/s(x)$

- Quantiles, percentiles, and order statistics

Visualization

- Histogram/density plots

- Bar and whisker plots, QQ plots
Bivariate Sample \((x, y) = (x_1, y_1), \ldots, (x_n, y_n)\)

Statistics

- **Sample covariance of \(x\) and \(y\)**

 \[
 s(x, y) = n^{-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = n^{-1} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}
 \]

- **Sample correlation of \(x\) and \(y\)**

 \[
 r(x, y) = \frac{s(x, y)}{s(x) s(y)} \in [-1, 1]
 \]

Visualization

- **Scatter-plot** \(\{(x_i, y_i) : 1 \leq i \leq n\} \subseteq \mathbb{R}^2\)
Aside: Regression Line and R-squared

Def’n: Sample regression line of y on x is the line $\ell^*(x)$ minimizing

$$\text{MSE}(\ell) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \ell(x_i))^2$$

over all linear functions $\ell(x) = ax + b$.

Fact: Sample regression line ℓ^* of y on x is given by

$$\ell^*(x) = m(y) + \frac{s(x, y)}{s^2(x)} [x - m(x)]$$

and satisfies $\text{MSE}(\ell^*) = s^2(y)[1 - r^2(x, y)]$.

Note: $s^2(y) = \text{MSE}$ of straight line $l(x) = m(y)$.
High-throughput Genomic Data

Represented as a \(p \times n \) data matrix \(\mathbf{X} = \{x_{i,j}\} \) with \(n \) columns and \(p \) rows

- \(n \) columns corresponding to \(n \) samples
- \(p \) rows corresponding to \(p \) genomic variables
- \(x_{i,j} = \) value of variable \(i \) in sample \(j \)

Common Examples

- gene expression data
- copy number data
- methylation data
- genotype data
Exploratory Analysis of Genomic Data

Step 1a: Univariate analysis of columns and rows of data matrix X
- sample/variable means and standard deviations
- histograms of these

Step 1b: Bivariate analysis of columns and rows of data matrix X
- heatmap of $n \times n$ matrix of correlations between samples
- heatmap of $p \times p$ matrix of correlations between variables
- scatter plots

Next steps: Principal component analysis (PCA), clustering, biclustering
Heatmap: Correlation Matrix of Samples \((n \times n)\)
Heatmap: Correlation Matrix of Genes \((p \times p)\)
Scatterplot of Mean and SD of Expression
Scatterplot of SD(expression) for Two Subtypes

Correlation: $r = 0.8384$
Principal Component Analysis
Principal Component Analysis (PCA)

Given: High dimensional samples $x_1, \ldots, x_n \in \mathbb{R}^p$ with $\sum_i x_i = 0$

Goal: Find a subspace V of \mathbb{R}^p meeting two criteria

- *Dimension reduction:* the dimension of V is small (much less than p, n)
- *Approximation:* sample x_j is close to its projection onto V

Goal: Subspace V is a good low dimensional approximation of the data.
Simplest case: Approximating subspace V is one-dimensional, that is, a line in \mathbb{R}^p determined by a unit vector v.

Turns out

- Finding a good direction is equivalent to maximizing the variance of the projections of the samples x_1, \ldots, x_n onto v.

- The best direction v_1 corresponds to leading eigenvector of the $p \times p$ sample covariance matrix $S = n^{-1}XX^T$, with $X = [x_1, \ldots, x_n]$.

- Other directions v_2, v_3, \ldots can be obtained from other eigenvectors of S.
Example TCGA Gene Expression Data

Heat map of gene expression data from The Cancer Genome Atlas (TCGA)

- Samples $n = 117$, two groups
 - 95 Luminal A breast tumors
 - 122 Basal breast tumors
- Variables: $p = 2000$ randomly selected genes
PCA on TCGA Expression Data

Figure: Projections of Sample data onto the first four principal components of the TCGA dataset. Colors represent subtype of cancer: Luminal A and Basal
Image Data

- **Data**: $\mathbf{X} = 458 \times 685$ matrix of pixel intensities

- **Idea**: Project columns of the image onto d leading eigenvectors of their sample covariance matrix. Consider quality of reconstruction.
Proportion of Variation Explained

![Graph showing the proportion of variation explained against the number of principal components. The graph indicates a curve that approaches but does not reach 1, suggesting that as the number of principal components increases, the proportion of variation explained also increases, but at a diminishing rate.]
Image Reconstruction

\[d = 10, \text{ PVE} = 95.79 \]

\[d = 20, \text{ PVE} = 97.24 \]

\[d = 40, \text{ PVE} = 98.18 \]
Clustering
General Setting

Given: Vectors $x_1, \ldots, x_n \in \mathbb{R}^d$

Goal: Identify group structure. Divide vectors into a small number of disjoint groups, called *clusters*, such that

- distances between vectors in the same cluster are small
- distances between vectors in different clusters are large

Areas of application

- Genomics and Biology
- Computer Science
- Psychology and Social Sciences
Some Clustering Approaches

Hierarchical: Candidate divisions of data described by a binary tree
- *Agglomerative* (bottom-up)
- Divisive (top-down)

Iterative: Search for local minimum of simple cost function
- *k-means* and variants
- Partitioning around medioids

Model-based: Fit feature vectors by a mixture of Gaussians

Spectral: Cluster top eigenvectors of Laplacian of dissimilarity matrix
The k-Means Algorithm

Given: Observations \(x_1, \ldots, x_n \in \mathbb{R}^d\) and desired number of clusters \(k\)

Initialize: Cluster centers \(C_0 = c_0(1), \ldots, c_0(k) \in \mathbb{R}^d\)

Iterate: For \(m = 1, 2, \ldots\) do:

- Let \(\pi_m\) be the nearest neighbor partition of the centers \(C_{m-1}\).
- Let \(C_m\) be the centroids (averages) of the vectors in each cell of \(\pi_m\)

Stop: When \(\text{Cost}(C_m) = \sum_{i=1}^{n} \min_{1 \leq j \leq k} \|x_i - c_m(j)\|^2\) stabilizes
Agglomerative Clustering

Stage 0: Assign each object x_i to its own cluster

Stage k:
- Find the two closest clusters at stage $k - 1$
- Combine them into a single cluster

Stop: When all objects x_i belong to a single cluster

Output: Dendrogram = binary tree where every node corresponds to a cluster, height of a node is distance between its children.

Note: Distance $d(C, C')$ between clusters C, C' measured in different ways

$$\min_{x_i \in C, x_j \in C'} d(x_i, x_j) \quad \text{or} \quad \frac{1}{|C| |C'|} \sum_{x_i \in C, x_j \in C'} d(x_i, x_j)$$
TCGA Data

Gene expression data from The Cancer Genome Atlas (TCGA)

- **Samples**
 - 95 Luminal A breast tumors
 - 122 Basal breast tumors

- **Variables**: 2000 randomly selected genes
TCGA Data

- Clustered samples (breast tumor subtype)
- Colors: Luminal A and Basal
Important Questions

▶ What is the right number of clusters?

▶ What is right measure of distance?

▶ Which clustering method to use?

▶ How robust is an observed clustering to small perturbations of the data?

▶ What significance can be assigned to the clusters?
Co-Clustering and Biclustering
TCGA Gene Expression Data

Heat map of gene expression data from The Cancer Genome Atlas (TCGA)

- **Samples**
 - 95 Luminal A breast tumors
 - 122 Basal breast tumors
- **Variables:** 2000 randomly selected genes
Row and Column Clustering

Figure: (Left) Rows reordered according to hierarchical clustering. (Right) Columns reordered according to hierarchical clustering.
Co-Clustering

Independently cluster rows and columns of the data matrix.

Result is a checkerboard partition

Note: Red, green blocks correspond to *large average submatrices* representing sample-variable interactions. Potential

- disease subtypes
- regulatory pathways
Co-Clustering and Biclustering

Figure: (Left): Co-Clustering: Rows and Columns of data matrix are separately reordered by clustering. (Right) The first bicluster extracted from this data.
Biclustering

Basic Idea: Search directly for a set of rows \(A \) and a set of columns \(B \) such that the entries of the submatrix

\[
C = \{ x_{i,j} : i \in A, j \in B \}
\]

have large average. Rows and columns of \(C \) need *not* be contiguous.

Advantages over (co)clustering

- Direct search for sample-variable interactions
- Clusters may overlap and need not cover the entire data matrix: better reflects underlying biology.
- Local: Inclusion of samples/variables in a block depends only on their expression values inside the block.
Biclustering

Three overlapping Biclusters.
LAS Search Procedure (Shabalin et al. 2010)

Input: An $n \times n$ matrix \mathbf{X} and integer $1 \leq k \leq n$.

Loop: Select k columns J at random. Iterate until convergence.

Let $I := k$ rows with largest sum over columns in J.

Let $J := k$ columns with largest sums over rows in I.

Output: Locally optimum submatrix associated with I, J.

In Practice

- Repeat 1000 times, adaptively choosing submatrix dimensions
- Output submatrix with largest average
- Residualize and repeat
Community Detection in Networks
Undirected Networks

Simple Graph $G = (V, E)$ where

- Node set $V = [n] = \{1, \ldots, n\}$
- Edge set E with $\{u, v\} \in E$ if u is linked to v
- No self-loops or multi-edges

Degree Sequence $d = \{d(1), \ldots, d(n)\}$ with

$$d(u) = \sum_{v \in V} \mathbb{I}(\{u, v\} \in E) = \text{number of edges incident on } u$$
Community Detection (Informal)

Given $G = (V, E)$ identify sets $C_1, \ldots, C_k \subseteq V$ such that

- Edge density within sets C_i is large
- Edge density between sets C_i is small
- Sets C_i called communities
Community Detection: Applications

Exploratory Analysis of

- Social networks
- Genetic networks
- Communication networks
Community detection and clustering share common goal of grouping objects, but differ in fundamental ways:

<table>
<thead>
<tr>
<th>Clustering</th>
<th>Community Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Vectors</td>
<td>Nodes</td>
</tr>
<tr>
<td>Similarity (continuous)</td>
<td>Connectivity (binary)</td>
</tr>
<tr>
<td>Metric structure</td>
<td>Relational structure</td>
</tr>
</tbody>
</table>
Application: Facebook Network

- Nodes = friends of JW on FB (561)
- Edges between FB friends (8375)
- Friends divided into 8 different groups

Results of community detection (ESSC)

- 7 communities detected
- Match score = .87 out of 1
Mining Differential Correlation
Mining Differential Correlation

<table>
<thead>
<tr>
<th>Samples</th>
<th>Condition 1</th>
<th>Condition 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Higher Correlation</td>
<td>Lower Correlation</td>
</tr>
</tbody>
</table>
Mining Differential Correlation

Overall Goal: Adaptively identify differentially correlated variable sets A.
- Candidate variable set(s) A not specified in advance
- Special case of differential analysis for weighted networks

Non-Assumptions: Correlation matrices R_1 and R_2 potentially complex
- May *not* be diagonal, banded, or sparse.

Note: *Differential correlation distinct from differential expression, clustering*

Application areas: Genomics, Connectomics, Economics
Figure: Sample correlation matrices from Her-2 and Luminal B cancer subtypes. Differentially correlated set of 165 genes (A) and 200 randomly chosen genes (B).
Application: Brain Connectome

FMRI data from Human Connectome Project (www.humanconnectome.org)

Single subject: 97K brain locations (37K voxels + 60K greyordinates)
 ▶ Condition 1: 316 language tasks
 ▶ Condition 2: 284 motor tasks

DCM output: 5 sets of brain locations

Time per DC set: 1-3 minutes (in Matlab)
First DC set: 1200 locations with $\bar{r}(C_1) = .24$ and $\bar{r}(C_2) = .05$

Visualization: DC locations on L/R hemisphere show clear spatial structure
Brain Connectome: Differential Expression

Visualization: Top 1200 locations as ranked by standard t-test
Conclusion
Recap

- The Scientific Method: Then and Now
- Reproducible Research
- Exploratory Data Analysis
- Principal Component Analysis
- Clustering and Biclustering
- Community Detection
- Correlation Mining